Understanding force-generating microtubule systems through in vitro reconstitution
نویسندگان
چکیده
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
منابع مشابه
Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins
Plant microtubules, composed of tubulin GTPase, are irreplaceable cellular components that regulate the directions of cell expansion and cell division, chromosome segregation and cell plate formation. To accomplish these functions, plant cells organize microtubule structures by regulating microtubule dynamics. Each microtubule localizes to the proper position with repeated growth and shortening...
متن کاملNanobiomechanical Properties of Microtubules
Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...
متن کاملA microtubule dynamics reconstitutional convention
In vitro reconstitution is the fundamental test for identification of the core components of a biological process. In this issue, Moriwaki and Goshima (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201604118) reconstitute all phases of microtubule dynamics through the inclusion of five key regulators and demonstrate that Polo kinase activity shifts the system from an interphase mode into an e...
متن کاملDepletion force induced collective motion of microtubules driven by kinesin.
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal fila...
متن کاملJcb_201407095 1..12
Correspondence to Gary J. Brouhard: [email protected]; or Luke M. Rice: [email protected] Abbreviations used in this paper: DARPin, designed ankyrin repeat protein; DCX, doublecortin; GMPCPP, guanylyl 5-,-methylenediphosphonate; MAP, microtubule-associated protein. Microtubules are polar polymers formed from -tubulin heterodimers. These tubulin subunits associate head-to-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016